2012年自考高等數(shù)學(xué)(一)復(fù)習(xí):一元函數(shù)微分學(xué)
二、一元函數(shù)微分學(xué)
(一)導(dǎo)數(shù)與微分
1、知識范圍
?。?)導(dǎo)數(shù)概念
導(dǎo)數(shù)的定義 左導(dǎo)數(shù)與右導(dǎo)數(shù) 函數(shù)在一點(diǎn)處可導(dǎo)的充分必要條件 導(dǎo)數(shù)的幾何意義與物理意義 可導(dǎo)與連續(xù)的關(guān)系
?。?)求導(dǎo)法則與導(dǎo)數(shù)的基本公式
導(dǎo)數(shù)的四則運(yùn)算 反函數(shù)的導(dǎo)數(shù) 導(dǎo)數(shù)的基本公式
?。?)求導(dǎo)方法
復(fù)合函數(shù)的求導(dǎo)法 隱函數(shù)的求導(dǎo)法 對數(shù)求導(dǎo)法 由參數(shù)方程確定的函數(shù)的求導(dǎo)法 求分段函數(shù)的導(dǎo)數(shù)
(4)高階導(dǎo)數(shù)
高階導(dǎo)數(shù)的定義 高階導(dǎo)數(shù)的計(jì)算
?。?)微分轉(zhuǎn)自環(huán) 球 網(wǎng) 校edu24ol.com
微分的定義 微分與導(dǎo)數(shù)的關(guān)系 微分法則 一階微分形式不變性
2、要求
?。?)理解導(dǎo)數(shù)的概念及其幾何意義,了解可導(dǎo)性與連續(xù)性的關(guān)系,掌握用定義求函數(shù)在一點(diǎn)處的導(dǎo)數(shù)的方法。
?。?)會求曲線上一點(diǎn)處的切線方程與法線方程。
(3)熟練掌握導(dǎo)數(shù)的基本公式、四則運(yùn)算法則及復(fù)合函數(shù)的求導(dǎo)方法,會求反函數(shù)的導(dǎo)數(shù)。
?。?)掌握隱函數(shù)求導(dǎo)法、對數(shù)求導(dǎo)法以及由參數(shù)方程所確定的函數(shù)的求導(dǎo)方法,會求分段函數(shù)的導(dǎo)數(shù)。
?。?)理解高階導(dǎo)數(shù)的概念,會求簡單函數(shù)的 階導(dǎo)數(shù)。
?。?)理解函數(shù)的微分概念,掌握微分法則,了解可微與可導(dǎo)的關(guān)系,會求函數(shù)的一階微分。
(二)微分中值定理及導(dǎo)數(shù)的應(yīng)用
1、知識范圍
?。?)微分中值定理
羅爾(Rolle)定理 拉格朗日(Lagrange)中值定理
?。?)洛必達(dá)(L'Hospital)法則
?。?)函數(shù)增減性的判定法
?。?)函數(shù)的極值與極值點(diǎn) 最大值與最小值
?。?)曲線的凹凸性、拐點(diǎn)
?。?)曲線的水平漸近線與鉛直漸近線
2、要求
?。?)理解羅爾定理、拉格朗日中值定理及它們的幾何意義。會用羅爾定理證明方程根的存在性。會用拉格朗日中值定理證明簡單的不等式。
(2)熟練掌握用洛必達(dá)法則求各種型未定式的極限的方法。
?。?)掌握利用導(dǎo)數(shù)判定函數(shù)的單調(diào)性及求函數(shù)的單調(diào)增、減區(qū)間的方法,會利用函數(shù)的單調(diào)性證明簡單的不等式。
(4)理解函數(shù)極值的概念。掌握求函數(shù)的極值、最大值與最小值的方法,會解簡單的應(yīng)用問題。
?。?)會判斷曲線的凹凸性,會求曲線的拐點(diǎn)。
(6)會求曲線的水平漸近線與鉛直漸近線。
?。?)會作出簡單函數(shù)的圖形。
?2012年高教自考網(wǎng)絡(luò)輔導(dǎo)課程招生簡章
更多信息請?jiān)L問:自學(xué)考試頻道 自學(xué)考試論壇
最新資訊
- 考前必背!自學(xué)考試《中國近現(xiàn)代史綱要》論述題高頻考點(diǎn)2024-10-19
- 自考報(bào)考策略:科學(xué)搭配科目,加速畢業(yè)進(jìn)程2024-07-20
- 2025年考研考生五一假期,英語科目應(yīng)該如何復(fù)習(xí)?2024-05-03
- 備考指南!2024年4月自學(xué)考試考前要做哪些準(zhǔn)備?2024-03-31
- 考前備考沖刺!自考如何一次就過?2024-03-30
- 考點(diǎn)匯總:《中國近現(xiàn)代史綱要》論述題2024-03-25
- 備考資料:《中國近現(xiàn)代史綱要》簡答題考點(diǎn)匯總2024-03-25
- 自考可以從哪些維度進(jìn)行備考?2024-02-17
- @自考生,這里有備考技巧2024-02-17
- 自學(xué)考試備考復(fù)習(xí)方法!建議收藏2024-02-16